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Abstract  The making of mathematical connections in the classroom plays a dual role. While many 
studies highlight the importance of connections for the learning of mathematics, others inform of 
students’ difficulties associated with the making of connections. This study aims to characterise the 
mathematical connections that arise in habitual classroom practice, using an inductive approach, in the 
context of introducing integers with pupils aged 12–13. Results show that connections emerge as net-
works of links resulting from interactions between the teacher and the students. We present a definition 
of connection, a detailed characterisation of their internal structure as networks of links and a global 
characterisation which takes into account the role of the connection in the context in which it takes place. 
The complementarity of the two characterizations allows us to coordinate, from a classroom perspective, 
existing specific classification proposals for connections with a broader notion of connection used by 
relevant curricular guidelines. Factors that may determine the complexity of connections and may be 
related with students’ difficulties when dealing with connections in the classroom are also discussed.

Résumé  L’établissement de liens mathématiques en classe joue un double rôle. Alors que de nom-
breuses études soulignent l’importance d’établir des liens dans l’apprentissage des mathématiques, 
d’autres font état des difficultés qu’éprouvent les élèves à faire ces liens. Cette étude vise à caractériser 
les liens mathématiques qui émergent dans le contexte habituel de la classe, en utilisant une approche 
inductive avec des apprenants de 12 et 13 ans, dans la situation où on introduit des nombres entiers. Les 
résultats montrent que des liens apparaissent en tant que réseaux de relations issus des interactions qui 
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ont lieu entre l’enseignant et les élèves. Nous présentons une définition du lien, c’est-à-dire que nous 
offrons une caractérisation détaillée de sa structure interne en tant que réseau de relations et propo-
sons une caractérisation plus générale qui prend en compte le rôle que joue le lien dans le contexte où 
il se produit. Du point de vue de la classe, la complémentarité des deux perspectives nous permet de 
coordonner les propositions de classification particulières existantes en ce qui concerne les liens dans 
une conception de ceux-ci qui est plus large que celle adoptée dans les orientations pédagogiques perti-
nentes. On aborde également les facteurs susceptibles de déterminer la complexité des liens et d’être liés 
aux difficultés rencontrées par les élèves lorsqu’ils composent avec les liens établis en classe.

Keywords  Classroom practice · Connection · Construction of mathematical knowledge ·  
Secondary education

Introduction

The making of connections is included to a greater or lesser extent as an essential element in the construc-
tion of mathematical knowledge in some relevant theoretical frameworks (e.g. Dubinsky & McDonald, 
2001; Duval, 2006; Godino et al., 2019; Lakoff & Núñez, 2000; Von Glaserfeld, 1995) and has also been 
stressed as an important dimension of mathematics teacher knowledge (Rowland et al., 2009).

This consensus on the importance of connections in the profound understanding of mathematics is 
also recognised by many curricular documents that emphasize the importance of the making of math-
ematical connections in the classroom (e.g. Department of Education U. K., 2013; National Council of 
Teachers of Mathematics, 2000). In particular, the connection standard (NCTM 2000) refers to con-
nections between mathematics and other contexts and/or connections between mathematical ideas that 
include broad connections, such as the connection between rational numbers, proportionality and linear 
relationships, and more specific connections such as the connection between two specific representa-
tions of the same concept.

However, the incorporation of relevant mathematical connections to classroom practice is not a clear 
and direct process and plays a dual role. On the one hand, there is research that confirms the relation 
between the establishment of connections and profound mathematical knowledge (Adu-Gyamfi et al., 
2017; Askew et al., 1997; Barmby et al., 2009; Caviedes et al., 2021; Cobb, 1991; Rittle-Johnson et al., 
2009). For instance, Fyfe et al. (2017) report on the benefits of including explicit connections between 
representations for a deep understanding of algebra. On the other hand, other research indicates that 
when connections are made many students experience difficulties. For instance, the results of Fyfe et al.  
(2017) show that the inclusion of connections is also related to difficulties in the understanding of spe-
cific solution methods. Other studies report that connections may be related to an excessive cognitive 
load (Gick & Holyoak, 1980; Rittle-Johnson et al., 2009; Sweller et al., 1998). In addition, the lack of 
precision regarding what it means to establish a relevant mathematical connection and the lack of spe-
cific models of how to take them to the classroom generate difficulties in the teachers when explicitly 
incorporating connections into their classroom practice (Frykholm & Glasson, 2005). A gap between 
theory-based recommendations about connections and school reality, caused by the situated nature of 
teachers’ practice, is also reported by Leikin and Levav-Waynberg (2007).

The lack of a common definition of the notion of connection in mathematics education, the potential 
difficulties associated with connections in classroom practice and the scarce empirical evidence of the 
specificities of connections in a classroom context lead us to focus on the context of classroom practice. 
Some preliminary results of this research project (De Gamboa & Figueiras, 2014) revealed that, in a 
classroom context, connections may emerge as a result of a complex network of interactions between 
the teacher and the students, and that connections can be understood as a network of simpler relations. 
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Therefore, investigating the preliminary ideas in greater depth, our research questions are (1) what is the 
specific nature of connections in a classroom context? and (2) What are the structural characteristics 
of such connections? With the aim of responding to these questions, we carry out an inductive analysis 
to propose a definition and a classification of connections that emerge from the data gathered in the 
context of classroom practice. In the “Discussion” section, we compare our results with those of other 
recent studies that have also proposed definitions and classifications for mathematical connections in 
different contexts. This study is particularly relevant for those researchers interested in the conceptu-
alization of mathematical connections. Some factors that determine complexity are also discussed as a 
consequence of the results.

Theoretical Framework

Some Relevant Types of Connections

The growing interest in the notion of mathematical connections has led to the appearance of a line of 
research which seeks to study and characterise the connections in processes of teaching and learning 
mathematics and, to do so, several authors have developed theoretical models. Nonetheless, despite 
the consensus on the importance of making connections for the learning of mathematics, the meaning 
of the notion of connection is too broad and may vary depending on the context where it is used. The 
term connection can refer, among other meanings, to an epistemological characteristic of mathematics 
(Evitts, 2004); to a mental process performed by a person who makes mathematics (Dolores-Flores & 
García-García, 2017); or to a characteristic of teacher’s knowledge to promote students’ comprehension 
(Rowland et al., 2009). Therefore, the classifications proposed in different research studies depend on 
the context of the study and on the data analysed.

Although there are many empirically based classifications of connections, some types of connections 
reported in those classifications are particularly relevant in the context of mathematics teaching and 
learning. First, connections between mathematics and other contexts or disciplines are highlighted by 
curricular guidelines (e.g. NCTM, 2000). They are also at the heart of mathematical modelling at school 
and play an important role in STEM education when mathematics is brought into play. Moreover, they 
have been subject to study in some research studies about mathematical connections (e.g. Dolores-Flores 
& Garcia-Garcia, 2017; Evitts, 2004). Second, connections between representations are the kind of 
mathematical connection that appears in most theoretical models for connections from any perspective. 
One of the most relevant characterisations of connections between representations is the one proposed 
by Duval (2006), who introduces the idea of conversion when the connection involves a change of reg-
ister of semiotic representation (a register of semiotic representation is a semiotic system that permits 
transformations of representations), and treatment when the register is maintained. The identification of 
this kind of connection is consistent in other relevant characterisations of connections (e.g. Adu-Gyamfi 
et al., 2017; Businskas, 2008; Dolores-Flores & Garcia-Garcia, 2017; Dreher et al., 2016; Rodríguez-
Nieto, 2021) and in some of our previous results (De Gamboa & Figueiras, 2014). Third and finally, 
procedural connections are also a type of connection identified consistently in several studies. They 
were introduced by Businskas (2008), and refer to the use of rules, algorithms or formulas. This last 
kind of connections is also identified by Dolores-Flores & Garcia-Garcia (2017) and Eli et al. (2011).

Apart from the previous three kinds of connections, several studies have identified other types of 
connections that inform about relevant specificities of connections. Businskas (2008) analysed the 
notions of connections that emerged from conversations and interviews with teachers and reported on 
five categories of connections: different representations; procedural; implication, that refers to reason-
ing of the if–then type; part–whole, that refers to relations of inclusion; and the instruction-oriented 
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connection, that refers to connections with previous knowledge. Eli et al. (2011) analysed the math-
ematical connections that emerged when prospective middle-grade teachers engaged in card sorting 
activities and propose, among others, two more relevant types of connections: categorical that refers 
to connections based on the use of surface features; and characteristic/property that refers to the use 
of common characteristics or properties. Dolores-Flores and García-García (2017) applied Businskas’ 
model to identify the intra-mathematical and extra-mathematical connections made by students when 
solving calculus problems. On the one hand, the five categories of connections proposed by Businskas 
were observed, and considering the limitations found in these categories when analysing the data, they 
proposed an extension, incorporating two categories: reversibility that refers to the use of inverse rela-
tions in mathematics; and meaning that refers to connecting different meanings of the same concept. In 
Rodríguez-Nieto (2021), the previous works are developed and an extended classification of mathemati-
cal connections is presented. In particular, the author proposes considering metaphorical connections 
as a new type of connection.

This research piece coincides with those of Dolores-Flores and García-García (2017) and Rodríguez-
Nieto (2021) in the context of classroom practice. However, while they use Businskas’ (2008) classifica-
tion and propose extensions of it, we have conducted an inductive study, and we did not explicitly adhere 
to a particular framework from the beginning. In the “Discussion” section, we compare our findings 
with those of other researchers.

Our View on the Mathematical Practices That Occur in the Classroom

We understand that the mathematical activity has the purpose of solving problems by performing 
mathematical practices, in the sense of the Onto-Semiotic Approach (OSA; Godino et al., 2019). A 
mathematical practice is conceived in this theory as a sequence of actions (Font et al., 2013). For the 
realization of these mathematical practices and for the interpretation of their results as satisfactory, it 
is necessary, in addition to the problem, to put into operation other mathematical objects. According 
to Font et al. (2013), the ‘object’ is used in a broad sense to refer to any entity which is, in some way, 
involved in mathematical practice and can be identified as a unit. Consequently, mathematical prac-
tices activate a conglomerate of primary objects formed by situations–problems, languages, definitions, 
propositions, procedures and arguments, articulated in what is called a configuration of primary objects 
(Godino et al., 2019). An essential example to distinguish practices from primary objects is when con-
sidering the mathematical activity involved in solving the task: Calculate the derivative of the function 
g(x) = (x3 − 2x2 + 4)(5x − 1) . For resolution, the student performs a sequence of actions (practice), such 
as reading the statement and calculating the derivative using the rule for the derivative of the product 
of functions: g�(x) = (3x2 − 4x)(5x − 1) + 5(x3 − 2x2 + 4) , which is a procedure (primary object). A 
key notion for connecting primary objects activated in mathematical practices is the notion of semiotic 
function (Godino et al., 2019), that is conceived, in a metaphorical way, as a correspondence between 
sets that brings into play three components: a plane of expression (initial object), a plane of content 
(final object), and a criterion or rule of correspondence (Godino et al., 2007). Semiotic functions are 
not usually established in isolation. They are usually part of chains or sets of semitic functions, which, 
in turn, can be considered globally as semiotic function.

In the particular context of classroom activity, mathematical practices can be understood, among others, 
from a cognitive, discursive and social perspective (Godino et al., 2019; Franke et al., 2007; Planas et al., 
2021). We believe teachers’ and students’ discourse is a prominent part of their practice, and the analysis 
of discursive interactions can provide explicit evidence of connection making. Our discursive perspective 
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focuses on Duval’s (2006) classification of registers of semiotic representation that includes natural lan-
guage, iconic representations, geometric representations, symbolic systems, diagrams and graphs, and aux-
iliary gestures. In this study, we will not delve into the discussion of whether gestures are (or not) a register 
of representation different from others. We limit ourselves to considering that gestures can be considered, 
above all, as auxiliary metaphorical expressions that affect the way of understanding a representation. For 
example, the number line that represents Z can be considered statically as a set of points or dynamically by 
making hand gestures that suggest movement along the line (in this case a student may think of the point as 
lying on the line rather than a part of the line, and the line as a path through which the points travel, since 
the gestures suggest the conceptual metaphor: the line is a path).

Considering the broadness of the notion of connection reported above and using the relational and 
pragmatic perspective proposed by the OSA, we focus on discursive interactions between the teacher and 
the students. Therefore, we understand mathematical connections in the context of classroom practice as 
an explicit relation between two objects (Fig. 1).

All these three elements ( O1 , O2 and relation) are identified from explicit utterances of the teacher and the 
students. The objects are understood in the sense of OSA. The relation between the two objects is established 
by the explicit description or justification of how O1 and O2 are related. For instance, a connection can be 
made between the symbolical representation −3 ( O1 ) and its representation as a point on the number line 
( O2 ), if there is an explicit utterance related to the equivalence between the two representations.

Method

The research framing the analysis of connections proposed in this article consists of the in-depth analysis 
of a class group (12–13 years old), in a public school in a centric neighbourhood in Barcelona, during a 
limited period of time defined by the teaching unit on integers. The class was composed of 10 girls and 
13 boys. The teacher was a mathematics graduate, with more than five years of experience in teaching in 
secondary schools and previous experience teaching mathematics in the university. The teacher had also 
recently passed a public examination to become a permanent secondary school teacher.

Classroom practices included mostly whole-class discussions (Lamberg, 2012) on tasks previously solved 
individually by the students in the classroom. Since the data are determined by the interaction between 
teacher and students, and since we are interested in conducting a more in-depth analysis, we opted for a 
qualitative and interpretative approach. The methodological design is a case study (Bryman, 2004; Yin, 
2014). According to Yin (2014), a case study is the in-depth empirical analysis of a phenomenon in its 
context. In this study, the case is the emergence of mathematical connections in the classroom and can be 
characterised, according to the classification by Yin (2014), as a common type or, in Bryman proposal 
(2004), as an exemplifying case. Parents gave informed consent of students’ participation.

The data used to perform the analysis are video and audio recordings of eight regular class sessions of 
60 min and their corresponding transcriptions. The eight sessions covered topics such as basic properties  
of natural numbers (g.c.d and l.c.m), the introduction of negative numbers, the basic properties of the 
operations with integers, combined operations with integers, powers, roots, and some word problems.  
To collect the information, non-participant observation was used (Caldwell & Atwal, 2005; Cohen  
et al., 2007). Therefore, the class group was observed, listened to and video-recorded and notes were  

O1

relation
→ O2

Fig. 1   Our preliminary definition of a mathematical connection
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taken, without intervening in the design of the sessions, the activities proposed or the development of  
the sessions. The data were processed in two phases: the first was aimed at identifying connections and 
establishing episodes, and the second was aimed at characterising and classifying the connections identi-
fied in the first phase.

First Phase of Analysis

The first data-processing consists of viewing all eight class sessions from the teaching unit on integers. 
The only theoretical construct used in the analysis was the idea of object in the sense of the OSA. The 
aim of this first viewing is to identify and define episodes in which connections appear. Each session 
was viewed at least twice by two researchers that took notes of relevant moments in the videos in which 

Table 1   Description of 
the coding stages and their 
outcomes

Stage 1 • In the first coding phase, the two objects O1 and O2  
related in each connection are identified, and the relation  
that connects them is described:O1 → O2

• The analysis carried out in the subsequent stages takes  
into account this structure of connections as networks  
of links

Stage 2 • In the specific analysis, each of the links that form each  
connection is coded. The two objects related by the link  
are described, and the particular excerpt of teacher’s or  
students’ discourse that underpins each link is identified,  
as shown in Figs. 4, 5 and 6. These particular utterances  
are coded describing how the link is made

• In the global analysis, each connection is considered as a 
whole, and is coded focusing on its role in the classroom 
context where it was made

Stage 3 • In the third stage, the codes used in Stage 2 are grouped  
in emergent themes

• In the case of the specific analysis, the codes used to  
describe each link are grouped in 12 themes of links.  
The themes were generated considering the nature of the 
objects that were related (e.g. representations, definitions, 
operations or properties) and the level of elaboration in  
the formulation of the link (e.g. description, argumenta- 
tion or justification)

• In the global analysis, the codes are grouped in 4  
emergent themes of connections, based on the role each  
connection played in the particular context where it  
appeared. The criteria used to generate the themes in the 
global analysis were the use of non-mathematical con- 
texts, epistemic features of mathematics, and the semiotic 
registers used

Stage 4 • In the specific analysis, the themes identified are grouped  
in 4 categories of links

• In the global analysis, the themes are refined into 4  
categories. However, a new round of coding is performed  
to break down the largest category. This led to the emer- 
gence of 4 new sub-categories

• The final outcome in Stage 4 was a definition of connec- 
tion in the context of classroom practice; a classification  
of these connections focused on their role in the context 
where they were made; and a detailed analysis of their  
internal structure as networks of links
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potential connections may emerge. A connection is identified when there is an explicit utterance, in  
either teacher’s or students’ discourse, to the relation between O1 and O2 (Fig. 1). This requisite of 
explicitness is highly relevant because our analysis is focused on explicit evidence from the teacher’s 
or students’ discourse. When a possible connection is identified, the fragment in which it appears is 
viewed repeatedly, with the aim of identifying the first and last utterance from the teacher and/or students 
which is related with the connection. The fragment of the video comprised between the first and the last 
utterances is called episode and makes up the units analysed in the subsequent stages of analysis. Once 
a connection has been identified during the viewing of the classroom sessions, and having outlined the 
episodes, these are transcribed. The average duration of the episodes was 5 min and 55 s.

Second Phase of Analysis

To characterise and classify the connections identified in the first phase, we follow 4 stages that allow 
us to progressively refine the analysis of connections and their structure. The categories were developed 
and refined inductively as grounded in the data.

In stage 1, when the three elements that determine each connection defined in Fig. 1 are identified 
( O1 , O2 and relation), the analysis revealed that, in some cases, the utterance that defined the connection 
may trigger (in the context of a classroom dialogue) other utterances that were related to the relation 
that defined the connection. These utterances created new relations between objects that enriched the 
original connection. These relations are called links. Each link can be a reformulation of the relation 
between O1 and O2, or a relation between either O1 or O2 and another object. Therefore, connections 
revealed as networks that can be made of one or more links. When a connection has only one link (i.e. 
it is defined by a single relation defined by a single utterance), the link coincides with the connection. 
When a connection is made of more than one link, the relation is defined by the coordination between 
the links involved in the network. The identification of this internal structure of connections motivated 
two parallel analyses of each connection in stages 2, 3 and 4 (Table 1): one global analysis focused on 
the role of each connection in the classroom context where it was made, and a specific analysis focused 
on the nature of each of the links that made up each connection.

The categorisation process was first performed by two researchers (stages 1, 2 and 3). All the partial 
results were then discussed with a third researcher. All the categories and subcategories of mathematical  
connections and links were triangulated in stage 4 (Aguilar and Barroso, 2015) with an expert on mathemati- 
cal connections that had already published some pieces of research on the definition and classification of  
mathematical connections. The expert used the emergent themes and matched them with the codes used 
in stage 2. This led to a refinement of the themes. Finally, content validity was used through expert judge- 
ment to search for the reliability and applicability of the characterisation of the emerging connections and  
links in the previous refinement. Expert judgement occurred in the context of a workshop on mathematical  
connections, with the participation of 10 researchers in mathematics education from Colombia, Mexico, 
Chile, Brazil and Spain, who had experience in the line of research on mathematical connections. Prior 
to the seminar, they were provided with the list of types of connections and types of links with fragments  
of the analysis so that they could assess whether the classification of the emerging connections and links 
was pertinent, based on the following four criteria taken from Vásquez et al. (2020): (a) sufficiency (if they  
allow to identify types of relationships); (b) clarity (if they are understood syntactically and semantically);  

Fig. 2   Elementary structure of connections as a network of links
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(c) coherence (if they are logically related to the dimension they measure); and (d) relevance (if they are 
essential and should be included). The comparison between classifications of connections led to a more 
refined identification of coincidences and differences of our proposed categories of links with the clas-
sifications proposed in other research studies (Businskas 2008; Rodríguez-Nieto 2021) which led, in turn, 
to the introduction of new terms for naming categories of links, such as the term metaphorical projection.

Results

The analysis of the eight classroom sessions resulted in the identification of 34 connections. Stage 1 of 
the analysis revealed that in a classroom context a connection can be a network of relations called links. 
Therefore, connections can be understood as semiotic functions that many times appear as chains or sets 
of other semiotic functions (the links). Each of the links is sustained by a relation between objects, such 
as the equivalence between representations or procedures, the application of procedures, justifications, 

Fig. 3   Classification of con-
nections

Table 2   Description of the 
sub-categories of intra-
mathematical conceptual 
connections with treatment

IMCT connections that 
emphasize…

Description List of  
connections

Representations The emphasis is placed on understand-
ing the differences between operations 
which have similar representations,  
such as −25 and (−2)

5 , ap and a−p , 
√

a + b and 
√

a +
√

b , or a
b
 and b

a

C3, C12, C14, 
C16, C21, 
C28, C30, 
C32, C34

Procedures The emphasis is placed on the equiva-
lence and suitability of different 
procedures for solving operations such 
as(−a) − (−b),(−a)b , −ab

−ab
 , or 

√

a

C6, C8, C11, 
C22, C23, 
C24, C25

Definitions The emphasis is placed on definitions  
such as the notions of multiple and divi-
sor and the property of being greatest 
or lowest; the relation between powers 
and multiplication; or the understanding 
of the definition of the powers and the 
square roots

C2, C18, C26

Patterns and properties The emphasis is placed on spotting a  
pattern that allows the enunciation of  
a proposition (property), such as the 
relation between the sign of the result  
of (−a)b and the fact of b being even  
or odd

C9, C10, C19
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generalisations, implications, the emphasis on a particular case or the existence of a common feature. 
Figure 2 shows the general structure of connections in the classroom. The numbering of the links is 
defined by their chronological appearance. The maximum n that we have identified is 6. Connections 
can be made up of one single link or many coordinated links.

Classification of Connections

The results of the analysis led to the characterisation of the connections and the links that shaped their inter- 
nal structure. Figure 3 shows the four categories of connections that were identified: intra-mathematical 
conceptual connections with treatment (IMCT) and with conversion (IMCC), intra-mathematical connec-
tions related to processes (IMCRP) and extra-mathematical connections (EMC). The connections have  
been numbered following their chronological order of appearance.

Intra-mathematical conceptual connections are relations established between representations, defini-
tions, operations, properties, procedures, justifications, and models associated with a concept. These 
connections are in turn differentiated into two categories, those that involve conversions and those that 
only entail that a treatment appears, in the sense proposed by Duval (2006).

The intra-mathematical conceptual connections with treatment make up most of the connections 
identified in the classroom. They are connections that are made between objects related to the same con-
cept, without changing registers (Duval, 2006). During the analysis, 22 conceptual intra-mathematical 
connections with treatment were identified. Although the 22 connections entail a transformation between 
representations in the same register, there are some connections that emphasize the characteristics of  
the representations used; connections that emphasize definitions; connections that emphasize proce-
dures; and connections that emphasize patterns and properties. These different emphases result in four 
sub-categories of intra-mathematical conceptual connections with treatment. In Table 2, the different 
sub-categories of IMCT are described, and the connections belonging to each sub-category are listed.

Although all connections are made explicit through particular representations, their classification 
depends on what the connection emphasises. For instance, in C21 (Table 3; Fig. 4), the difference 
between a

p

aq
 when p ≥ q and when p < q is discussed and the relation between representations is empha-

sised. Iván’s utterance (l1) what if p is smaller than q? connects the representations of the previous 
case ( p ≥ q ) with a new possible representation without the previous restriction. Next, his own infer-
ence (would it be negative?) along with the teacher’s answer (l2) introduces a link between powers 
with natural exponents and powers with integer exponent. In C22, on the contrary, the equivalence of 
procedures for calculating −ab

−ab
 is discussed focusing on their suitability for performing the calculation, 

and the emphasis is placed on why the two procedures are equivalent.
One single intra-mathematical conceptual connection with conversion was identified, C15 

(Table 4), which seeks to coordinate (l4) powers with integer bases with a real model (going to the 
basement –2 of a building). In this case, the logic of the model does not determine the interpretation 
of the operations (l3), since it does not seek to use a metaphor of the power in a real context, but 
the model is used to introduce a change in register which helps to show the difference between the 

Table 3   Excerpts of the 
transcription that define the 
links for connection C21

Link Excerpt

l1 Iván: (referring to a
p

aq
 ) And what if p is smaller than q?

l2 Iván: would it be negative?
Teacher: […] my answer is yes. Do you want me to proof it? If we have 

23∕27 , it would be 2⋅2⋅2

2⋅2⋅2⋅2⋅2⋅2⋅2
 . Now what? We simplify the 2 s, and 

what do we get in the numerator? I will help you, it is a 1. And in the 
denominator? 24
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order in which the two operations should be applied in each case (l1 and l2). Thus, it is not an extra-
mathematical connection, but an intra-mathematical connection with conversion.

Intra-mathematical connections related to processes are relations established between a math- 
ematical concept and a mathematical process that transverses the mathematical activity. More specifi-
cally, they are considered connections that establish relations with reasoning and justification, with  
the communication of mathematical information and with the heuristics related to problem-solving.

For example, connection C1 (Table 5; Fig. 5) emerges when solving an activity on the greatest  
common divisor and the lowest common multiple of a pair of numbers. A student observes that  
there is regularity when one of the numbers is a multiple of the other and intervenes in class to men-
tion it. A connection is established between the calculation procedure of the l.c.m. and the g.c.d.,  
and a property related to the l.c.m. and the g.c.d. of pairs of numbers, where one is the multiple of 
another. The establishment of this relation further explores the concepts of l.c.m. and g.c.d., since 
both the multiples and the denominators of both numbers are analysed exhaustively. The first link  
(l1) produced is between the general calculation method and the particular case in which one number  
is the multiple of the other (Table 5, Fig. 5). Below, the utterances of the students and the teacher  

Table 4   Excerpts of the 
transcription that define  
the links for connection C15

Link Excerpt

l1 Teacher: Anna, here (referring to (−2)
5 ) where do we change the sign? 

What does it affect? The 2. So, I’m telling you to go down to base-
ment -2, and then, when you have gone down to basement -2 do the 
operation to go up to the fifth

l2 Teacher: this minus (referring to the minus sign in −25 ), what does it 
affect? It affects this whole number

l3 Several students: I don’t understand the difference
l4 Teacher: […] You don’t know which basement you have to go down to, 

you don’t know, until you know what the value of this number is

Table 5   Excerpts of the 
transcription that define the 
links for connection C1

Link Excerpt

l1 Teacher: let’s revise now the activity in which we had to calculate 
the l.c.m. and the g.c.d of some special pairs of numbers

l2 Asad: The small number is the g.c.d and the big number is the 
l.c.m. […] Well, in these cases

Martí: When a number is a multiple of another it is also the g.c.d
l3 Teacher: Well, let’s see what Martí has said. We have a suspicion. 

Don’t write it down, it’s only a suspicion. Martí, will you tell me? 
We haven’t checked it yet

[…] If a number is a divisor of another number b, which is the g.c.d 
(a, b)?

Several students: b
l4 Teacher: […] Because it’s one thing to suspect it, and another to 

be sure. Now, everyone, leave your notebooks, we’ll do our first 
mathematical demonstration

[The teacher directs the reasoning based on analysing the lists of the 
divisors of a and b.]

There can’t be more common divisors; this is the highest common 
divisor. Suspicion verified

l5 Teacher: Now, a conclusion that I really like. If something happens 
once, twice or four times, it does not necessarily always happen
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highlight the property observed in the previous particular case, generalising for any pair of num- 
bers in which one is a multiple of the other (l2). Based on the previous generalisation, the teacher 
establishes another generalisation formulating the previous property in a more elaborated way (l3).  
By demonstrating in a detailed and rigorous manner, the previous generalisation is further explored  
(l4). Lastly, through the final assessment of what it means to demonstrate, the teacher justifies the 
importance of the justification method that she has just shown (l5).

The establishment of this connection may help students to understand that to be sure that a math-
ematical property is fulfilled, a rigorous justification must be performed in all cases, and we must not 
limit ourselves to accepting an inductive result, which is fulfilled in some particular cases, meaning  
it is a connection related with processes.

To identify this category of connections, it is necessary to identify an explicit element which  
serves to interpret that the connection goes beyond considering a specific concept and focuses on a 
more general process in mathematics which is applied to a wide variety of concepts. For instance, in  
the previous example, the explicit utterance of the teacher that defines l5 is what represents the move 
from a specific situation (the proof that the pattern can be generalised) to a process (the difference 
between inductive and deductive reasoning).

Eight intra-mathematical connections related with processes were identified, among which three blocks 
are differentiated: those related with explanation, justification and demonstration, as in the previous case 
(C1, C5, C7, C17 and C27); those related with accuracy in the use of mathematical language (C33); and 
those related to the ability to decide based on why and when to use a procedure or a property (C20, C29).

Extra-mathematical connections are established between an extra-mathematical reference and a math-
ematical content. Two main types of extra-mathematical connections are defined. First, the connec-
tions in which extra-mathematical references are used to improve comprehension of the mathematical 
concepts, such as the basic metaphors (grounding) described by Lakoff and Núñez (2000). Second, the 
connections that show applications of mathematics in extra-mathematical situations, such as the knowl-
edge of aspects of real life both in everyday terms and in other curricular disciplines such as visual art, 
social science, experimental science, economics, technology and music. Although we did not identify 
any connection of this second type, as there was no application of mathematics to any other context, it 
is relevant to mention them as they have been widely studied in mathematics education.

Connection C4 is an example of a connection in which extra-mathematical references are used to 
improve comprehension of the mathematical concepts. The connection is created between the addition 
and subtraction of integers and a model of movement which helps to interpret them. While the students 
solve (−8) − (−4) , a connection is established between {Z, +} and a model of movement in which there 
is a positive direction (whether to the right or up) and a negative direction (the opposite to the previous 
one, respectively). Below, Table 6 displays the explicit utterances that define each link of connection 
C4 and Fig. 6 shows its structure.

Table 6   Excerpts of the 
transcription that define the 
links for connection C4

Link Excerpt

l1 Teacher: […] That’s how we explained it the other day (referring to the 
use of the rules for operating with integers)

l2 Claudia: Because there are two “–” signs and that means it’s “ + ”, so 
you have to go up, not down

l3 Igor:I don’t understand why if there is a minus symbol, you go up
l4 Teacher:Because we don’t subtract, I mean, we’d subtract, Igor, if we 

subtracted in the direction…let’s…see… I’ll subtract, okay? I’m 
subtracting, so when I subtract I go down, it means you go down, but 
it goes down in the opposite direction (she draws a swirl), and if you 
go down in the opposite direction you go up
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During the analysis, 3 extra-mathematical connections were identified (C4, C13, C31). Two of them 
refer to connections the teacher made between mathematical language and computer language (C13), 
and between mathematical language and musical language (C31). In both cases, characteristics of non-
mathematical language were used to show the importance of understanding and using mathematical 
language correctly.

The previous characterisation of connections was obtained through a global analysis of connections 
that considered the role that each connection played in the construction of mathematical knowledge, in 
the classroom context where it was made. However, since most of the connections (27 out of 34) were 
formed by more than one link, it is necessary to consider how the links that form the connection are 
coordinated and how these links inform of the nature of mathematical connections.

Classification of the Links That Make Up the Internal Structure of the Connections

Throughout the analysis, we identified 12 types (themes) of links that can be grouped in 4 catego-
ries: representational, based on common feature, procedural and argumentative (Fig. 7). Below, we 
present a detailed description of each category and provide examples of each type. The numbers in 
parentheses stand for the number of the link in the internal structure of the connection that precedes 
the parentheses. For instance, C12(2) stands for the link 2 in C12.

Representational: The link is established between two representations of the same mathematical 
object ( R1 → R2 ). The link can relate equivalent representations (ER), when both representations  
belong to the same register (e.g. in C12(2) the teacher links −25 and −(+2)

5 ) to emphasize the base of 
the power) or alternate representations (AR), when there is a change in the register (e.g. representing 
numbers geometrically).

Based on common features: The link is established between two objects O1 → O2 that share a 
common feature, without being equivalent. These links are triggered by erroneous and ambiguous 
interpretations of mathematical objects by the students. The common features that sustain the link 
can be related to their definition (CFD), for instance in C18(2) when a student makes the mistake 
(−1)

36 = −1 ⋅ 36 and refers to the power as a multiplication. The student identifies that the notion  
of multiplication is used in both operations and assigns an erroneous meaning to (−1)

36 . This cat- 
egory of links may also be related to commonalities in the representation (CFR), for instance in 
C15(1,2,3,4) (Fig. 4) or in C34(1), when a student explicitly refers to 8

32
 and 32

8
 as being equivalent.  

In this case, the student uses the numbers represented in the fraction 8

32
 and searches for a way to 

obtain an integer result, assigning an erroneous meaning to 8

32
 . Finally, they can be related to some 

Fig. 6   Internal structure of the connection C4
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metaphorical projections (MP) in which the metaphor is used in a literal way. For instance, in C4(2), 
when a student interprets −4 − (−8) as a metaphor of being in basement 8 and going up 4 floors.

Procedural: This category refers to two different types of links. The first is called procedure link (P) 
and refers to links between a concept and a procedure ( C → P ) that can be used when dealing with the 
concept. For instance, in C4(1), the teacher suggests that using the rules for operating with integers to 
obtain a notation without double symbols is a good resource to make the calculation. The second one 
is called equivalent procedures link (EP) and refers to links ( P1 → P2 ) between two procedures that are 
useful for solving the same task. For instance, in C22(1,2,3,4,5,6), students propose four different pro-
cedures for solving (−5)7

(−5)7
 and the teacher conducts a discussion on their equivalence.

Argumentative: The link is established between two propositions ( PR1 → PR2 ), where PR1 stands for 
a premise and PR2 stands for a conclusion. This category of links includes reasoning of several kinds. 
First, it refers to justifications (JU) of practices in mathematics. For instance, in C1(5) (Table5; Fig. 5), 
the teacher discusses the difference between inductive reasoning and deductive reasoning emphasizing 
the meaning of a mathematical proof; in C27(1), the teacher discusses the difference between 

√

a + b and 
√

a +
√

b providing numerical examples; or in C21(2), the teacher justifies the use of the representation 
a−k, k ∈ N . Second, it refers to arguments built upon a principle of transitivity (TR). For instance, in 
C16(2), a student asserts that two operations are the same because they have the same results and the 
teacher answers providing counterexamples of different operations that have the same result, explicitly 
emphasising that having the same result does not mean that the operations are the same. Third, it refers 
to implications (IM) or if–then arguments. For instance, in C14(3), when discussing the difference 
between −25 and (−2)

5 the teacher shows three different representations of 25(25;2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2; and 
32 ) and argues that if we change the sign of all three of them, then they would also represent the same 
operation. Fourth, it can refer to the application of a property to a particular case (PC). For instance, in 
C7(1), the teacher examines a particular case of a procedure previously proposed by a student for solving 

Fig. 7   Classification of links at stage 3 and stage 4 of the analysis
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−4 − (−8) . Finally, it can refer to generalisations (GE) of a property to a broader set, as in C21(1), when 
a student proposes a generalization of a

p

aq
 when p ≥ q to the case when p < q.

Table 7 shows the relation between the categories of connections and the categories of links that 
were identified during the analysis of the eight sessions. The reduced amount of extra-mathematical 
connections and intra-mathematical conceptual connections with conversion that were identified in the 
analysis makes it difficult to observe a relation between them and specific types of links. However, in 
the case of intra-mathematical connections related with processes, they are mostly related to argumen-
tative links. In the case of intra-mathematical conceptual connection with treatment, all the types of 
links were identified, which signals the diversity of such a kind of connections. Other implications of 
the coordination between the global and specific analyses (Table 7) are discussed in the next section.

Discussion

The fact that the definition and the characterisation of connections stem from the analysis of classroom 
practice helps to identify determining aspects to understand the nature of mathematical connections in 
the classroom and their underlying structure. In the context of classroom mathematical activity, con-
nections may emerge as a result of multiple interactions between teacher and students. This led to a 
conceptualization of connections as networks of links, which coincides with that proposed by Eli et al. 
(2011). This conceptualization entailed two complementary levels of analysis: global and specific. The 
coordination between these two levels enabled us to harmonise, from a classroom practice perspective, 
the broad idea of connection fostered by curricular guidelines (NCTM 2000; Department of Education 
U. K., 2013) with several classifications of specific connections provided by the research (Businskas, 
2008; Dolores-Flores & García-García, 2017; Eli et al., 2011; Rodríguez-Nieto, 2021).

The four categories of connections characterised in the global analysis are closely related to the 
definition of connection provided by the connection standard (NCTM, 2000), as extra-mathematical 
connections and intra-mathematical conceptual connections with conversion can be identified in the 
descriptions of connections provided by the connection standard (NCTM, 2000). Intra-mathematical 
connections related to processes and intra-mathematical conceptual connections with treatment are rel-
evant examples of important types of connections fostered by the connection standard, the formulation of 
which may be diffuse. Intra-mathematical connections related to processes provide explicit examples of 
what it means to understand how mathematical ideas interconnect and build on one another to produce 
a coherent whole, as they emphasize transversal processes that help to comprehend the coherent whole 
(NCTM, 2000). This category of connection occurs when the teacher uses a discussion on a particular 
activity to highlight the role of proof in mathematics (C1, C5, C7, C27), or the importance of rugosity in  
communication (C33), finding patterns (C17, C29), and finding alternative procedures (C20). The fact 
of connecting particular activities with general processes suggests that intra-mathematical connections 
related to processes may reinforce a bidirectional movement between an algorithmic context and another 
more abstract or general one. The explicit establishment of intra-mathematical conceptual connections 
with treatment is associated with discussions about the understanding of the objects that intervene in 
the practices that appear when operating with integers (representations, definitions or properties), which 
can promote the construction of a greater ability among students to relate objects and practices through 
semiotic functions. In the case of extra-mathematical connections, despite only three of this kind of 
connections being identified, it is important to study in greater depth the way extra-mathematical con-
nections are built upon intra-mathematical connections, as reported by De Gamboa et al. (2020).

The specific analysis allows us to identify how the different categories and themes of links described 
in other research studies determine the role of each connection in the classroom context where it is made. 
Table 7 shows a trend in some links to appear as part of particular categories of connections. Equivalent 
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representation links (e.g. Adu-Gyamfi et al., 2017; Businskas, 2008; Dolores-Flores & Garcia-Garcia, 
2017), and the common feature of representation and common feature of definition links (Eli et al., 2011), 
tend to be part of intra-mathematical connections with treatment that are made at moments when the 
mathematical activity has an exploratory nature and the students must identify equivalent representations 
and use them to perform procedures that have been explained previously. Common features of repre-
sentation and common features of definition links were related with moments at which the utterances 
of the students revealed ideas and questions related to misconceptions. The reasoning associated with 
the appearance of these links tends to be rather unsophisticated. Metaphorical projections (Rodríguez-
Nieto, 2021) links tend to appear as part of extra-mathematical connections in which extra-mathematical 
references are used to improve comprehension of the mathematical concepts. Procedural links (Dolores-
Flores & Garcia-Garcia, 2017) tend to be part of intra-mathematical conceptual connections with treat-
ment made at moments when the interactions between students and the teacher included the use of the 
properties of integers and the operations with them at a descriptive level. Generalization, implication 
(Businskas, 2008), and particular case links (Businskas, 2008; Dolores-Flores & Garcia-Garcia, 2017) 
tend to appear as part of intra-mathematical connections related to processes and intra-mathematical 
conceptual connections with treatment made at moments related to the justification of new properties 
and some fundamental practices in mathematics, such as making a hypothesis, generalising or discuss-
ing the suitability of some practices in mathematics.

However, not all the identified links can be found in other research studies. In the case of the link 
equivalent procedure, situations that do not correspond to the procedure type proposed in the reviewed 
literature are observed, since two procedures appear simultaneously and the utterances determining the 
connection are aimed at justifying their equivalence, while in the case of the procedure type only one 
procedure is considered at a time. The identification of equivalent procedure links is relevant because 
they tend to be part of intra-mathematical conceptual connections made in classroom discussions about 
the differences and similarities between procedures that can be used to solve the same task. Identifying 
and justifying the equivalence of different procedures for a particular task may be a way of recogniz-
ing and using connections among mathematical ideas (NCTM, 2000). The link justification cannot be 
compared to the implication type proposed by Businskas (2008) and Rodríguez-Nieto (2021) since it is 
not limited to if–then reasonings, but rather refers to justifications in a broader sense that may include 
the justification of the correction of a procedure, the relevance of the application of a procedure in a 
specific context or the importance of demonstration in mathematics. The identification of justification 
links is relevant because this broad sense of justification may help students to use various types of rea-
soning that are not restricted to if–then reasonings, such as constructing viable arguments to validate 
the use of procedures.

Moreover, the coordination between the two levels of analysis allows us to describe factors that 
determine the complexity of connections. Results show that one same type of connection can be made 
at different levels of complexity depending on the role that links play (representational, regulatory, 
explanatory or justifying, in terms of the OSA). For instance, Table 7 shows that intra-mathematical con-
nections that emphasise representations can be made at a descriptive level (C12), using representational 
and common feature links, or at a more complex level using argumentative links (C21; Table 3; Fig. 4) 
that have a justifying role in terms of the OSA. Therefore, the types of links that make up the connections 
may help to understand the complexity of such connection. This factor of complexity is consistent with 
the notion of quality introduced by Mhlolo et al. (2012). The combination of this factor, together with 
the complexity related to the appearance of conversions (Adu-Gyamfi et al., 2017; Duval, 2006) and 
the interactive nature of classroom activity, may help to understand specific difficulties experienced by 
students when working with connections as excess cognitive load (Rittle-Johnson et al., 2009; Sweller 
et al., 1998), problems with coordinating different semantic fields (Gick & Holyoak, 1980), and barriers 
created by differences in language (Jackson et al., 2014).
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Conclusion

In the context of classroom practice, connections appear as networks of links that are made explicit by 
the teacher’s or students’ utterances. The coordinations between the global and the specific analyses 
illustrate how links are coordinated to shape categories of connections that may help to understand 
how some connections described in the connection standard are brought into play (intra-mathematical 
connections related to processes and intra-mathematical conceptual connections with treatment). These 
results complement those of Presmeg (2006), adding some specificities of classroom practice. The iden-
tification of explicit factors that may determine the complexity of connections in the classroom shows 
how and why the different categories of connections can be made at different levels of complexity and 
may shed some light on understanding the difficulties students experience when working with connec-
tions. As the making of connections in the classroom can trigger learning opportunities for students (De 
Gamboa et al., 2020), understanding the complexity of such connections may help teachers to understand 
student’s construction of new mathematical entities, as the coordination of the different links that form 
connections may be understood as a dynamic nesting of epistemic actions in the sense of Hershkowitz 
et al. (2001). Gaining an in-depth understanding of how mathematical connections work in the classroom 
can help teachers to better understand students’ difficulties and misconceptions when making connec-
tions, to better interpret curricular guidelines regarding connections, to adapt class methodologies, to 
design activities, and to manage classroom discussion with the goal of helping students to understand 
complex connections and make the most of the learning opportunities triggered by them (De Gamboa 
et al., 2020). This signals the importance of investigating the relationship between teacher knowledge 
and the effective use of connections in the classroom as is the case of Dreher et al. (2016) or De Gamboa 
et al. (2020) and the need to better understand how theory-based recommendations can be brought into 
play in classroom practice (Leikin & Levav-Waynberg, 2007).

Even if the case was selected as being of a common type or an exemplifying case, the characteristics 
of the classroom organisation and the topic that was worked on during the sessions conditioned the 
emergence of different types of connections. The results of this research can be particularly useful to 
understand how mathematical connections appear in classroom environments where the interactions 
between the teacher and the students are fostered, and particularly when the topic worked on is related 
to the definition of concepts, operations and properties. However, more research should be conducted 
on other kinds of classroom organisation and topics, as little evidence has been provided on the catego-
ries extra-mathematical connections and intra-mathematical conceptual connections with conversion.

Funding  Open Access Funding provided by Universitat Autonoma de Barcelona. This work was supported in part by the 
[Ministerio de asuntos económicos y transformación digital-Spain] under grant PID2019-104964 GB-I00; and [AGAUR-
Catalunya] under grant SGR-2014–972-GIPEAM.

Data Availability Video and audio recordings are protected and are not available due to data privacy laws. The processed 
data sets are available at CORA RDR.

Declarations 

Conflict of Interest  The authors declare no competing interests.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to 
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. 
The images or other third party material in this article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

http://creativecommons.org/licenses/by/4.0/


260	 Can. J. Sci. Math. Techn. Educ. (2023) 23:241–261

1 3

References

Adu-Gyamfi, K., Bossé, M. J., & Chandler, K. (2017). Student connections between algebraic and graphical polynomial 
representations in the context of a polynomial relation. International Journal of Science and Mathematics Educa-
tion, 15(5), 915-938.

Aguilar, S., & Barroso, J. M. (2015). La triangulación de datos como estrategia en investigación educativa [Data triangula-
tion as an strategy for educational research]. Pixel-bit, 47, 73-88.

Askew, M., Brown, M., Rhodes, V., Johnson, D., & Wiliam, D. (1997). Effective teachers of numeracy. Kings College, 
London.

Barmby, P., Harries, T., Higgins, S., & Suggate, J. (2009). The array representation and primary children’s understanding 
and reasoning in multiplication. Educational Studies in Mathematics, 70(3), 217-241.

Bryman, A. (2004). Social Research Methods. Oxford, New York
Businskas, A. M. (2008). Conversations about connections: How secondary mathematics teachers conceptualize and 

contend with mathematical connections. Dissertation, Simon Fraser University
Caldwell, K., & Atwal, A. (2005). Non-participant observation: Using video tapes to collect data in nursing research. 

Nursing Research, 13(2), 42–54.
Caviedes, S., De Gamboa, G., & Badillo, E. (2021). Mathematical objects that configure the partial area meanings mobi-

lized in task-solving. International Journal of Mathematical Education in Science and Technology, 1–20.
Cobb, P., Wood, T., Yackel, E., Nicholls, J., Wheatley, G., Trigatti, B., & Perlwitz, M. (1991). Assessment of a problem-

centered second-grade mathematics project. Journal for Research in Mathematics Education, 22(1), 3-29.
Cohen, L., Manion, L., & Morrison, K. (2007). Research methods in education. Routledge, London
De Gamboa, G., Badillo, E., Ribeiro, M., Montes, M., & Sánchez-Matamoros, G. (2020). The role of teachers’ 

knowledge in the use of learning opportunities triggered by mathematical connections. In: Zehetmeier S, Potari 
D, Ribeiro M (eds) Professional development and knowledge of mathematics teachers. Routledge, pp. 24-43.

De Gamboa, G., & Figueiras, L. (2014). Conexiones en el conocimiento matemático del profesor: propuesta de un 
modelo de análisis [Connections in teacher’s mathematical knowledge: a proposal of an analysis model]. In: 
González M, Codes M, Arnau D and Ortega T (Eds.) Investigación en Educación Matemática XVIII. SEIEM, 
Salamanca, pp. 337–344

Department of Education U. K. (2013). Mathematics programs of study: Key Stage 4 (National Curriculum in Eng-
land). Her Majesty’s Stationery Office, London

Dolores-Flores, C., & García-García, J. (2017). Conexiones intramatemáticas y extramatemáticas que se producen 
al resolver problemas de Cálculo en contexto: un estudio de casos en el nivel superior [Intra-mathematical and 
extra-mathematical connections that occur when solving Calculus’ problems in context: A case study at a higher 
level]. Bolema 31(57), 158–180.

Dreher, A., Kuntze, S., Lerman, S. (2016). Why use multiple representations in the mathematics classroom? Views of 
English and German preservice teachers. International Journal of Science and Mathematics Education, 14(2), 
363-382.

Dubinsky, E., & McDonald, M. A. (2001). APOS: A constructivist theory of learning in undergraduate mathematics 
education research. In: Holton D (ed) The Teaching and Learning of Mathematics at University Level. An ICMI 
Study. Series: New ICMI Study Series, Vol.7. Kluwer, Dordrecht, 273–280.

Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational 
Studies in Mathematics, 61, 103-131.

Eli, J. A., Mohr-Schroeder, M. J., Lee, & C. W. (2011). Exploring mathematical connections of prospective middle-
grades teachers through card-sorting tasks. Mathematics Education Research Journal, 23(3), 297–319.

Evitts, T. (2004). Investigating the mathematical connections that preservice teachers use and develop while solving 
problems from reform curricula. Dissertation, Pennsylvania State University College of Education. USA

Font, V., Godino, J. D., & Gallardo, J. (2013). The emer gence of objects from mathematical practices. Educational 
Studies in Mathematics, 82, 97-124.

Franke, M. L., Kazemi, E., & Battey, D. (2007). Mathematics teaching and classroom practice. In: Lester, FK Jr (ed) Sec-
ond handbook of research on mathematics teaching and learning. Information AGE Publishing, Charlotte, pp 225-256

Frykholm, J. A., & Glasson, G. E. (2005). Connecting Science and Mathematics instruction: Pedagogical content 
knowledge for teachers. School Science and Mathematics, 105(3), 127-141.

Fyfe, E. R., Alibali, M. W., & Nathan, M. J. (2017). The Promise and Pitfalls of Making Connections in Mathemat-
ics. North American Chapter of the International Group for the Psychology of Mathematics Education

Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12(3), 306-355.
Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. 

Zdm, 39, 127-135.



261Can. J. Sci. Math. Techn. Educ. (2023) 23:241–261	

1 3

Godino, J. D., Batanero, C., & Font, V. (2019). The onto-semiotic approach: implications for the prescriptive character 
of didactics. For the Learning of Mathematics, 39(1), 37- 42.

Hershkowitz, R., Schwarz, B., & Dreyfus, T. (2001). Abstraction in Context: Epistemic Actions. Journal for Research 
in Mathematics Education, 32, 195-222.

Jackson, D. C., Johnson, E. D., & Blanksby, T. M. (2014). A practitioner’s guide to implementing cross-disciplinary links 
in a mathematics support program. International Journal of Innovation Science and Mathematics Education 22(1).

Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics 
into being. Basic Books, New York

Lamberg, T. (2012). Whole class mathematics discussions: Improving in-depth mathematical thinking and learning. 
Pearson Higher Ed, New York

Leikin, R., & Levav-Waynberg, A. (2007). Exploring mathematics teacher knowledge to explain the gap between 
theory-based recommendations and school practice in the use of connecting tasks. Educational Studies in Math-
ematics, 66(3), 349-371.

Mhlolo, M. K., Schafer, M., & Venkat, H. (2012). The nature and quality of the mathematical connections teachers 
make. Pythagoras 33(1), 1-9.

National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. NCTM, Reston, VA
Planas, N., Morgan, C., & Schütte, M. (eds) (2021). Classroom Research on Mathematics and Language: Seeing 

Learners and Teachers Differently. Routledge, London
Presmeg, N. (2006). Semiotics and the “connections” standard: Significance of semiotics for teachers of mathematics. 

Educational Studies in Mathematics, 61, 163-182.
Rittle-Johnson, B., Star, J. R., & Durkin, K. (2009). The importance of prior knowledge when comparing examples: Influ-

ences on conceptual and procedural knowledge of equation solving. Journal of Educational Psychology 101(4), 836.
Rodríguez-Nieto, C. A. (2021). Analysis of mathematical connections in the teaching and learning of the derivative 

based on a networking of theories between the Theory of connections and the Onto-semiotic Approach. Disseration, 
Universidad Autónoma de Guerrero, Mexico

Rowland, T., Turner, F., Thwaites, A., & Huckstep, P. (2009). Developing primary mathematics teaching. SAGE publica-
tions, London

Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational 
Psychology Review 10(3), 251-296.

Vásquez, C., Alsina, A., Pincheira, N., Gea, M. M., & Chandia, E. (2020). Construcción y validación de un instrumento 
de observación de clases de probabilidad [Construction and validation of an instrument of observation of probability 
classes]. Enseñanza de las Ciencias 38(2), 25-43.

von Glaserfeld, E., (1995). Radical Constructivism: A Way of Knowing and Learning. Studies in Mathematics Education 
Series: 6. The Falmer Press, London

Yin, R. (2014). Case Study Research. Sage, USA

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional 
affiliations.


	Meaning and Structure of Mathematical Connections in the Classroom
	Abstract 
	Résumé 
	Introduction
	Theoretical Framework
	Some Relevant Types of Connections
	Our View on the Mathematical Practices That Occur in the Classroom

	Method
	First Phase of Analysis
	Second Phase of Analysis

	Results
	Classification of Connections
	Classification of the Links That Make Up the Internal Structure of the Connections

	Discussion
	Conclusion
	References


